Author's Solution - Mar-2024

Given :

O is incentre
OD = DE
$A C=A F$
$\mathrm{OA}=\mathrm{AG}$
BEFG is concyclic.
It's enough to prove that $\angle E G F=\angle E B F$.

Construction :

Join OB, OC \& BD. Consider $\triangle O C A \& \triangle A G F$.

$\angle B A O=\angle O A C \quad(\because A O$ is angle bisector, as O is incentre, given $)$
$\angle B A O=\angle G A F \quad$ (vertically opposite angle)
$\therefore \angle B A O=\angle O A C=\angle G A F, \& A C=A F, O A=A G$ Given
$\therefore \triangle O A C \cong \triangle G A F \quad$ (By SAS Congruency)
$\Rightarrow \angle A G F=\angle A O C=180^{\circ}-\left(\frac{A+C}{2}\right) \quad[\because O C$ is angle bisector $\angle C$

$$
\begin{aligned}
& =180^{\circ}-\left(\frac{180^{\circ}-B}{2}\right) \quad \angle O A C+\angle A C O+\angle A O C=180^{\circ} \\
& \left.=90^{\circ}+\left(\frac{B}{2}\right) \quad \frac{A}{2}+\frac{C}{2}+\angle A O C=180^{\circ}\right]
\end{aligned}
$$

It's enough to prove that
$\angle E B F=90+\frac{B}{2}$
$\angle O B F=\frac{B}{2} \quad$ (as $C B$ is angle bisector of $\angle B$
$\angle D B O=\angle D B C+\angle C B O$

$$
\begin{equation*}
=\angle D A C+\angle C B O=\frac{A}{2}+\frac{B}{2} . \tag{1}
\end{equation*}
$$

$\angle D O B=\angle O B A+\angle B A O=\frac{A}{2}+\frac{B}{2}$---------(2) (by exterior angle property $\triangle A O B$)
from (1) \& (2) OD=DE=DB
$\Rightarrow \mathrm{D}$ is circumcentre of $\triangle B E O$
$\Rightarrow \angle E B O=90$
$\therefore \angle E B F=90+\frac{B}{2}$----------------- Hence Proved.

Solution given by DR. M. RAJA CLIMAX

