Author's Solution - Mar-2024

Given :

O is incentre OD = DE AC = AF OA = AG BEFG is concyclic. It's enough to prove that $\angle EGF = \angle EBF$.

Construction :

Join OB, OC & BD. Consider $\triangle OCA \& \triangle AGF$. $\angle BAO = \angle OAC$ (: AO is angle bisector, as O is incentre, given) $\angle BAO = \angle GAF$ (vertically opposite angle) $\therefore \angle BAO = \angle OAC = \angle GAF$, & AC = AF, OA = AG Given $\therefore \triangle OAC \cong \triangle GAF$ (By SAS Congruency) $\Rightarrow \angle AGF = \angle AOC = 180^{\circ} - \left(\frac{A+C}{2}\right)$ [: OC is angle bisector $\angle C$ $= 180^{\circ} - \left(\frac{180^{\circ}-B}{2}\right) \angle OAC + \angle ACO + \angle AOC = 180^{\circ}$ $= 90^{\circ} + \left(\frac{B}{2}\right) \qquad \frac{A}{2} + \frac{C}{2} + \angle AOC = 180^{\circ}$]

It's enough to prove that $\angle EBF = 90 + \frac{B}{2}$ $\angle OBF = \frac{B}{2}$ (as CB is angle bisector of $\angle B$ $\angle DBO = \angle DBC + \angle CBO$ $= \angle DAC + \angle CBO = \frac{A}{2} + \frac{B}{2}$ -----(1) $\angle DOB = \angle OBA + \angle BAO = \frac{A}{2} + \frac{B}{2}$ ------ (2) (by exterior angle property $\triangle AOB$) from (1) & (2) OD=DE=DB Solution given by \Rightarrow D is circumcentre of ΔBEO **DR. M. RAJA CLIMAX** $\Rightarrow \angle EBO = 90$ Founder Chairman, $\therefore \angle EBF = 90 + \frac{B}{2}$ ------ Hence Proved. **CEOA Group of Institutions** Tamil Nadu, India